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Introduction
Pizza is one of the most popular foods in the world 
and has a long tradition and history (a brief over-
view can be found in the supplementary informa-
tion (stacks.iop.org/PhysEd/53/065011/mmedia)). 
However, despite its apparent simplicity, it proves 
to be quite challenging to produce a delicious pie. 
The main question we address here is, why pizza 
in a pizzeria is so much better than what you can 
produce at home in an electric oven by analyzing 
the cooking processes in both cases in detail.

Being curious and pizza aficionados, the 
authors began looking into the secrets of mak-
ing a perfect pizza. Rule number one, as Italians 
told them, was to always look for a pizzeria with 
a wood-fired oven (not an electrical one). Good 
pizzerias are proud of their ‘forno’ (‘oven’ in 
Italian), in which you can see with your own eyes 
the entire process of baking. The pizzaiolo (pizza-
baker) forms a dough disc, covers it with top-
pings, places the fresh pizza on top of a wooden 

or aluminum peel, and finally transfers it into the 
oven. A couple of minutes later it is sitting in front 
of you, covered with mouth-watering bubbles of 
cheese, encouraging you to consume it and wash 
it down with a pitcher of good beer.

The authors received useful advice from a 
friendly pizzaiolo who was working in a local 
Roman pizzeria (figure 1), frequently visited 
by them when they lived in that neighborhood: 
‘Always come for a pizza either before 8 p.m. or 
after 10 p.m., when the pizzeria is half-empty’. 
The advice was also confirmed by one of the piz-
zeria’s frequent visitors: a big grey cat. When the 
pizzeria was full, the cat would leave, and did not 
show any interest in what was on the patron’s 
plates.

The reason for this advice was very sim-
ple—oven capacity. As the pizzaiolo explained,  
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Abstract
Physical principles are involved in almost any aspect of cooking. Here 
we analyse the specific process of baking pizzas, deriving in simple terms 
the baking times for two different situations: for a brick oven in a pizzeria 
and a modern metallic oven at home. Our study is based on fundamental 
thermodynamic principles relevant to the cooking process and is accessible 
to undergraduate students. We illustrate the underlying physics by some 
simple common examples and then apply them in detail to the example of 
baking pizza.
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table 1.
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325 °C–330 °C5 is the optimal temperature for 
Roman pizza baked in a wood-fired oven with 
fire-brick bottom. In this case, a thin Roman pizza 
will be done in 2 min. Thus, even putting two piz-
zas into the oven at a time, the pizzaiolo can serve 
50–60 clients within an hour. During peak hours, 
about one hundred customers frequent the pizze-
ria per hour and at least ten clients are waiting 
for a take-out pizza. To meet the demand, the piz-
zaiolo increases the temperature in the oven up 
to 390 °C, and pizzas ‘fly out’ of the oven every 
50 s (hence, each one requires a baking time of 
around 1½ min). However, their quality is not the 
same: the bottom and the crust are a little ‘over-
done’ (slightly black), and the tomatoes are a lit-
tle undercooked.

Since it is not always easy to find a pizzeria 
with a brick oven, let us look what advantages it 
has compared to an electric oven and whether there 
is a way to use the latter to produce a decent pizza.

To illustrate the physical principles involved 
in baking pizzas, let us consider a common exam-
ple of how heat is transferred. Imagine when you 
were a child and had a fever, but no thermometer 
at hand. Your mother would put her hand on your 
forehead and quickly say: ‘you have a high temper-
ature, no school for you tomorrow’. To investigate 
this process scientifically, we start with simplify-
ing the problem: Let us imagine that your mom 
is touching your forehead with her own forehead 
rather than her hand. In that case, if the temper-
ature of your forehead would have been 38 °С,  
and your mother’s 36 °С, it is clear by the symme-
try of the problem that the temperature at the inter-
face (T0) between the two foreheads will be 37 °С, 
and that your mother would feel the flow of heat 
coming from your forehead (the actual temper-
ature distribution in time is shown in figure 2).

Now let us assume that your head is made 
of steel, with the same temperature—38 °С. 
Intuitively, it is clear the temperature at the inter-
face will increase, in this case to 37.7 °С. This 
is related to the fact that the steel will ‘deliver’ 
more heat to the interface region from its bulk, 
since its heat conductivity is larger (an illustration 
is shown in figure 3).

Let us now analyze the process of pizza bak-
ing more scientifically. In contrast to the above 
example to illustrate the concept of interface 
temper ature, the pizza ‘system’ is more com-
plicated as it consists of a (bulk) oven and only 

thin layers of dough and toppings, which all three 
must be considered when analyzing the cooking 
process, involving the process of boiling water as 
well. Note, that for the following analysis we con-
sider a horizontal arrangement, i.e., the oven is on 
the left (as the child’s head) and the pizza on the 
right (like mother’s hand or head).

Heat transfer
We start by reminding the reader of the main 
concepts of heat transfer [1]. When we talk about 
‘heat’, we usually have in mind the energy of 
a body (like the child’s head, the oven, or the 
pizza itself) associated with the chaotic motion 
of atoms, molecules and other particles it is com-
posed of. We inherited this concept of heat from 
the physics of a past era. Physicists say that heat 
is not a function of the state of a system, but rather 
that its amount depends on the way the system 
achieved this state. Like work, heat is not a type of 
energy, but a value convenient to use in describing 
energy transfer [2, 3]. The amount of heat, neces-
sary to raise the temperature of a mass unit of the 
material by one degree, is called a specific heat 
capacity of the material:

c =
∆Q

M∆T
. (1)

Here M is the mass of the system and ∆Q is the 
quantity of heat required for heating the sys-
tem by a temperature ∆T . From this expression 
it is clear that the heat capacity is measured in 
J  ⋅  kg−1  ⋅  K−1 in SI units.

In the case of a thermal contact between the 
two bodies with different temperatures, the heat 
will go from the warmer body to the cooler one. 
The heat flux density q is the amount of heat ∆Q 
that flows through a unit area per unit time in the 
direction of temperature change:

q =
∆Q
S∆t

. (2)

In the simplest case of a homogenous non-uni-
formly heated body, using equation (1), one finds

q =
cM∆T

S∆t
= cρ

(∆x)2

∆t

Å
∆T
∆x

ã
= −κ

dT
dx

, (3)

6 One can also use this formula to easily find the heat loss 
through the walls of one’s house during a cold winter. In this 
stationary situation, the temperature distribution does not 
change with time.
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where ρ  is the mass density6. Assuming that Δx 
is small, we identified the value in parentheses 
as the derivative of the temperature by the coor-
dinate x and considered the fact that the temper-
ature decreases in x-direction (see figure  4). In 
the general case, q is a vector and the derivative 
in equation  (3) is replaced by the gradient ∇T , 
which describes the rate of temperature change 
in space. The coefficient κ in equation (3) is the 
thermal conductivity, which describes the ability 
of a material to transfer heat when a temperature 
gradient is applied7. Equation (3) expresses math-
ematically Fourier’s law, which is valid when the 
temperature variation is small.

Next, let us analyze how a ‘temperature 
front’ penetrates a medium from its surface, when 
a heat flow is supplied to it (see figure 4). Assume 
that during time t the temperature in the small cyl-
inder of the length L (t) and cross-section S  has 
changed by ∆T 8. Let us get back to equation (3) 
and rewrite it by replacing ∆x  by L (t):

cρL (t)∆T
t

= κ
∆T
L (t)

. (4)

Solving equation  (4) with respect to the length 
L (t) one finds:

L (t) ∼
 

κt
cρ

=
√
χt, (5)

i.е. the temperature front enters the medium by 
a square-root law of time. The time after which 

Figure 1. Two modern pizzaiolos in Rome in front of a brick pizza oven and pizza Magherita.
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Figure 2. Temperature profile within child’s head and 
mother’s hand or head- 0.1 s, 1 s, 10 s, and 60 s after 
they made contact.
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Figure 3. The same as figure 2, but with a steel 
‘head’.

7 The definition of the thermal conductivity κ = cρ (∆x)2

∆t  used 
in equation (3) requires clarification: While our simplified 
derivation suggests a geometry dependence, we emphasize 
that in reality it is determined only by microscopic properties 
of the material.
8 This process is not stationary anymore and the flow q is not 
constant, since the heat will be partially used for the heating 
of the cylinder material. Therefore, unlike in the stationary 
process, the rate of temperature change dT/dx in the medium 
is a function of space and time.
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the temperature at distance L from the interface 
will reach a value close to the one of the inter-
face depends on the values of κ, с, and ρ . The 
param eter χ = κ/cρ is called the thermal diffu-
sivity or coefficient of temperature conductivity 
and the heating time of the whole volume can be 
expressed in its terms: τ ∼ L2/χ.

Of course, our consideration of the heat 
penetration problem into a medium is just a sim-
ple evaluation of the value L (t). A more precise 
approach requires solution of differential equa-
tions. Yet, the final result confirms our conclusion 
(5), just corrected by a numerical factor:

L (t) =
√
πχt. (6)

Now that we know how heat transfer works, let us 
get back to the problem of calculating the temper-
ature at the interface between two semi-spaces: on 
the left with parameters κ1, с1, ρ1 and temperature 
T1 at −∞, and on the right with parameters κ2, 
с2, ρ2 and temperature T2 at +∞. Let us denote 
the temperature at the boundary layer as T0. The 
equation of energy balance, i.е. the requirement 
of equality of the heat flowing from the warm, left 
semi-space through the interface to the cold, right 
semi-space, can be written in the form

q = κ1
T1 − T0√

πχ1t
= κ2

T0 − T2√
πχ2t

. (7)

Here we simplified the problem assuming that all 
temperature changes happen at the corre sponding 
time dependent length (6). Solving this equa-
tion with respect to T0 one finds that

T0 =
T1 + ν21T2

1 + ν21
, (8)

where

ν21 =
κ2

κ1

…
χ1

χ2
=

…
κ2c2ρ2

κ1c1ρ1
 (9)

One notices, that time does not enter in expres-
sion (8) (i.е. the interface temperature remains 
constant in the process of the heat transfer, 
see figures  2–5). In the case of identical media 
with different temperatures one can easily find: 
T0 = T1+T2

2 . This is the quantitative proof of the 
intuitive response we provided in the beginning 
of the article for the temperature of 37 °С at the 
interface between the mother’s hand and the 

child’s forehead. If the child’s head would be 
made of steel, ν21 � 1 and T0 ≈ T1, the interface 
temperature would be much higher, meaning that 
the child’s fever would feel higher.

Finally, we are ready to discuss the advan-
tages of the brick oven. Let us start from the 
calcul ation of the temperature at the interface 
between the pizza placed into the brick wood-
fired oven (wo) and its heated baking surface. All 
necessary parameters are shown in table 1.

Assuming the initial temperature of the pizza 
dough (do) as Tdo

0 = 20 ◦C, and the temperature 
inside the oven—аs our pizzaiolo claimed—being 
about Two

1 = 330 ◦C, we find for the temperature 
at the boundary layer between the oven surface 
and pizza bottom

Two
0 =

330 ◦C + 0.65 · 20◦C
1.65

≈ 208 ◦C.

As we know from the words of the same piz-
zaiolo, a pizza is perfectly baked in 2 min under 
these conditions.

Let us now repeat our calculations for the 
electric oven with its baking surface made of steel. 
For an electric oven the ratio will be νeo = 0.1, 
and if heated to the same temperature of 330 °С, 
the temperature at the bottom of the pizza will be 
equal to

330 ◦C + 0.1 · 20 ◦C
1.1

≈ 300 ◦C.

That is too much! The pizza will just turn into coal! 
This interface temperature is also much higher 
than in Naples’ pizzerias, where oven temper-
atures between 400 °C–450 °C are common.

Well, let us formulate the problem differently. 
Let us assume that generations of pizza makers, 
who were using wooden peels to transfer pizzas 

T0 + ∆T T0

q

S
M = ρ·S·∆x

∆x
x

Figure 4. Heat flow in a small cylinder from hot 
(T0  +  ΔT) to cold (T0). Notice, the temperature 
decreases from left to right!

Phys .  Educ .  53  (2018)  065011



The physics of baking good pizza

5November 2018

into the oven, are right: the temperature at the 
(Roman) pizza’s bottom should be about 210 °С.  
What would be the necessary temperature for an 
electric oven (eo) with steel surface?

The answer follows from equation  (8) with 
coefficient νeo = 0.1 and solved with respect to 
Teo

1  when the temperature at the bottom of the 
pizza is the same as in the wood oven: Teo

0 = Two
0 . 

The result of this exercise shows that the electric 
oven should be much colder than the brick one: 
Teo

1 ≈ 230 ◦C.
It seems that if one could disregard the fla-

vor of burning wood, the sizzling dry air in the 
brick oven and other natural features, the problem 
would be solved: We just set the electric stove 
controls to 230 °C and in a couple of minutes we 
can take an excellent pizza out of the oven. But: 
is it that easy?

Thermal radiation
To answer this question, we first need to con-
sider the second important mechanism of a heat 
transfer: thermal radiation [4]. Its intensity, the 
amount of radiation energy arriving each second 
to 1 сm2 of surface in the oven, is determined by 
the Stefan–Boltzmann law:

I = σT4, (10)

where σ = 5.67 · 10−8 W · (m2 · K4)
−1

 is the so-
called Stefan–Boltzmann constant.

A typical brick oven has a double-crown 
vault filled with sand, which is kept at almost con-
stant temperature. Its walls as well as the bottom 

part, are also heated to Two
1 = 330 ◦C = 603 K, 

meaning that the complete volume of the oven is 
‘filled’ by infrared radiation. With a temper ature 
that high, this radiation becomes significant: a 
pizza in this oven is continuously ‘irradiated’ 
from both sides by a ‘flow’ of infrared radiation 
of intensity

Iwo = σ(Two
1 )

4
= 5.67 · 10−8 (603)4

= 7.5 kW · m−2,

i.е. each second an amount of energy close to the 
0.75 J arrives at 1 сm2 of pizza11.

Here one should notice, that, in its turn, the 
pizza also irradiates out a ‘flow’ of the intensity 
Ipizza = σ(Tpizza)

4. Since the major part of the 
baking time is required for the evaporation of 
water contained in the dough and toppings, we 
can assume Tpizza = 100 ◦C = 373 K, since the 
toppings will boil at this temperature till they (and 
the whole pizza) are well cooked, which results in 
a radiation intensity of Ipizza = 1.1 kW · m−2, i.e. 
15% of the obtained radiation, the pizza ‘returns’ 
back to the oven.

For the much less heated electric oven, the 
corresponding amount of energy, incident to 1 
сm2 of pizza surface, is less than half:

Ieo = σ(Teo
1 )

4
= 5.67 · 10−8 (503)4 W

m2 = 3.6 kW · m−2,

while the returned radiation is the same: 
1.1 kW · m−2 .

Now it is a time to evaluate what amount of 
heat 1 cm2 of pizza receives per second through 
its bottom. By definition it is determined by the 
heat flow (3) and to get its numeric value, we will 
evaluate the temperature gradient at the oven sur-
face in the same way as was done in equation (7):

Table 1. Physical properties of different materials, including heat capacity, thermal conductivity, density and 
temperature conductivity.

Property/Material
Heat capacity с  
[J  ⋅  (kg  ⋅  K)−1]

Thermal  
conductivity  
κ [W  ⋅  (m  ⋅  K)−1]

Mass density 
ρ [kg  ⋅  m−3]

Temperature 
conductivity  
χ [m2  ⋅  s−1] ν21

9

Dough10 2–2.5  ×  103 0.5 0.6–0.8  ×  103 2.5–4.2  ×  10−7 1
Food grade steel (Х18Н10Т) 4.96  ×  102 18 7.9  ×  103 4.5  ×  10−6 0.1
Fire brick 8.8  ×  102 0.86 2.5  ×  103 4.0  ×  10−7 0.65
Water (@25C) 4.2  ×  103 0.58 1.0  ×  103 1.4  ×  10−7 0.2

9 For dough, steel, and brick, material ‘2’ is dough. For water, 
material ‘1’ is steel.
10 The material parameters for dough should be considered as 
an estimate. It is clear that the exact numbers strongly depend 
on the type of flour and the fermentation/rising time of the 
dough (in the latter process, the dough is enriched by gases, 
which change its density).

11 Here we assume that the pizza behaves as a black body. In 
reality it is slightly reflective, reducing the amount of heat it 
absorbs.
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q (t) = κ
To

1 − T0√
πχt

,

where To
1  is the temperature of the oven. One 

can see, that, contrary to the Stefan–Boltzmann 
radiation, the heat flux arriving into the pizza by 
means of a heat conductance depends on time. 
Correspondingly, the amount of heat transferred 
to 1 cm2 of pizza from the oven during time τ is 
determined by

Q (τ) =

ˆ τ

0
q (t)dt = 2κ (To

1 − T0)

…
τ

πχ
.

Therefore, the total amount of heat, arriving at 
1 cm2 of pizza during time τ , is

Qtot (τ) = σ[(To
1 )

4 − (Tpizza)
4
]τ + 2κ(To

1 − T0)

…
τ

πχ
.

 (11)

This value is used to heat 1 cm2 of pizza from the 
raw pizza temperature Tdo

2 = 20 ◦C to Tpizza:

Qheat = cdoρdod
(
Tpizza − Tdo

2
)

.

Yet, this is not all. During the process of baking 
the perfect pizza we apparently evaporate water 
from the dough, tomatoes, cheese, and other 
ingredients. We need to take the required energy 
for this into account as well. If one assumes that 
the water mass fraction α evaporates from the 
dough and all topping one gets:

Qboil = αLρwaterd.

Here d is the thickness of the pizza, which we 
assume to be d  =  0.5 cm, while L = 2264.76 J · g−1  
is the latent heat of evaporation for water.

Collecting both these contributions in one, 
we can write

Qtot = Qheat + Qboil = cdoρdod
(
Tpizza − Tdo

2
)
+ αLρwaterd.

 (12)
Equating equations  (11) and (12) one finds the 
final equation  determining the ‘baking time’ of 
pizza:

σ
î
(To

1 )
4 − (Tpizza)

4
ó
τ + 2κ (To

1 − T0)

…
τ

πχ

= cdoρdod
(
Tpizza − Tdo

2
)
+ αLρwaterd.

 (13)

Final baking time calculation
To obtain a realistic answer for the baking time, it 
is important to know the amount of water which 
is evaporated during the baking process. A typical 
recipe for pizza Margarita calls for 240 g of dough 
and 90 g of toppings (consisting of tomatoes and 
mozzarella). The dough contains about one-third 
of water and the toppings 80% (the rest is mostly 
fat from the cheese). Together with a weight loss 
of 30 g, a good assumption is a 20% loss of water, 
i.e. α  =  0.2. Using this with the values of specific 
heat capacity and density for dough from table 1, 
one finds that Qtot = (70 + 226) J · cm−2, which 
gives for the baking time in the wood oven 
τwo ≈ 125 s. For the electric oven an analogous 
calculation results in an almost 50% longer time 
τeo ≈ 170 s. We see that we have succeeded in 
reproducing the value disclosed to us by our piz-
zaiolo: 2 min for baking in a wood oven. The 
result of an attempt to bake a pizza in an electric 
oven will be the mentioned unbalanced product.
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Figure 5. Temperature profile in a brick oven with 
pizza at different times. At 60 s the top surface of 
the pizza reaches 100 °C (red circle). Here we only 
take thermal diffusion into account. Evaporation and 
radiation are neglected.

Figure 6. Heat transfer mechanisms in the pizza 
oven.
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Using equation (8) one can easily find that the 
temperature at the interface between the pizza and 
oven surface reaches 240 °С, when the temper-
ature in the wood-fired brick oven increases to 
390 °С. Replacing correspondingly T0  in equa-
tion (13) one can find the baking time under these 
extreme conditions to be approximately 82 s. 
Hence, the productivity of the oven increases by 
almost 50%!

A final ‘secret’ disclosed to us is important 
for pizzas with water-rich toppings (eggplants, 
tomatoes slices, or other vegetables). In this case, 
the expert first bakes the pizza in the regular way 
on the oven surface, but when the pizza’s bottom 
is done, he lifts it with the wooden/aluminum peel 
and holds it elevated from the baking surface for 
another half minute or more to expose the pizza to 
just heat irradiation. In this way they avoid burn-
ing the dough and get well cooked toppings.

Certainly, as is routinely done in physics, 
to get to the core of the phenomenon, we exam-
ined only the simplest model here (in particular, 
we ignored the third mechanism of heat transfer: 
convection, which we can assume to have only a 
small effect. (See figure  6, which illustrates the 
essential physical processes).

As a final note, we remark that it is difficult 
to build a classic brick oven, and many custom-
ers do not appreciate the difference between an 
excellent and decent pizza. These are the reasons 
why engineers invent all sorts of contraptions to 
improve the results of pizza baking at home: for 
example, inserting a ceramic bottom made of spe-
cial ceramics to imitate the bottom of brick ovens 
in a modern professional electric oven. To bake a 
pizza evenly, rotating baking surfaces are availa-
ble—convection ovens emulate the gas flows in 
brick ovens, and many other things. But, the dry 
heat and the smell of wood in traditional firebrick 
ovens remain the ideal way to bake the perfect 
pizza.
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